If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+x-27=0
a = 6; b = 1; c = -27;
Δ = b2-4ac
Δ = 12-4·6·(-27)
Δ = 649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{649}}{2*6}=\frac{-1-\sqrt{649}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{649}}{2*6}=\frac{-1+\sqrt{649}}{12} $
| 3/5(5x-10)=-1 | | 10-x=-2x+9 | | -4(-2x-3)=-12 | | -5(-6-3b)+6=141 | | 9a^/3a=0 | | y-5-2=y | | 6n–5n=17 | | -15=3+9x | | 5x=11-2 | | 2/3x-3(x+1)=-2x-1/3(6-x) | | 0.22(x+4)=0.2+2.3 | | 4^x-4^x-1=96 | | 6x=4=6x+4 | | 20.72=x+(2.47)(x-7)*(1-0.4) | | 21w-14+18-26w=3w-18 | | n/8=11/5= | | 2x+3(x+4)=10x | | 20.72=x+(2.41)(x-7)*(1-0.4) | | 6(n+4)=−18 | | 4x+9=-6x+13 | | 7s+26=-6s | | -7p+24=p+8(2p+6) | | 5(x+6)=2(x+3 | | x+22=x+33 | | xx4=8 | | -2p=9p+44 | | 5(3x+2)-3=67 | | a+7=-11 | | 47=3x-10 | | -8s-9=15-5s | | -3x=7x+100 | | 9k+6=8k+15 |